BAER AND QUASI-BAER PROPERTIES OF SKEW PBW EXTENSIONS
Authors
Abstract:
A ring $R$ with an automorphism $sigma$ and a $sigma$-derivation $delta$ is called $delta$-quasi-Baer (resp., $sigma$-invariant quasi-Baer) if the right annihilator of every $delta$-ideal (resp., $sigma$-invariant ideal) of $R$ is generated by an idempotent, as a right ideal. In this paper, we study Baer and quasi-Baer properties of skew PBW extensions. More exactly, let $A=sigma(R)leftlangle x_{1},ldots,x_{n}rightrangle $ be a skew PBW extension of derivation type of a ring $R$. (i) It is shown that $ R$ is $Delta$-quasi-Baer if and only if $ A$ is quasi-Baer.(ii) $ R$ is $Delta$-Baer if and only if $ A$ is Baer, when $R$ has IFP. Also, let $A=sigma (R)leftlangle x_1, ldots , x_nrightrangle$ be a quasi-commutative skew PBW extension of a ring $R$. (iii) If $R$ is a $Sigma$-quasi-Baer ring, then $A $ is a quasi-Baer ring. (iv) If $A $ is a quasi-Baer ring, then $R$ is a $Sigma$-invariant quasi-Baer ring. (v) If $R$ is a $Sigma$-Baer ring, then $A $ is a Baer ring, when $R$ has IFP. (vi) If $A $ is a Baer ring, then $R$ is a $Sigma$-invariant Baer ring. Finally, we show that if $A = sigma (R)leftlangle x_1, ldots , x_nrightrangle $ is a bijective skew PBW extension of a quasi-Baer ring $R$, then $A$ is a quasi-Baer ring.
similar resources
Baer Extensions of BL-algebras
In this paper we define Baer BL-algebras as BL-algebras with the property that co-annihilator filters are generated by central elements. We use sheaf-theoretic techniques to construct a Baer extension of any BLalgebra, that is to embed any nontrivial BL-algebra A into a Baer BLalgebra A∗. The embedding turns to be an isomorphism if A is itself a Baer BL-algebra. 2000 MSC: 08A72, 03G25, 54B40, 0...
full textOn quasi-baer modules
Let $R$ be a ring, $sigma$ be an endomorphism of $R$ and $M_R$ be a $sigma$-rigid module. A module $M_R$ is called quasi-Baer if the right annihilator of a principal submodule of $R$ is generated by an idempotent. It is shown that an $R$-module $M_R$ is a quasi-Baer module if and only if $M[[x]]$ is a quasi-Baer module over the skew power series ring $R[[x,sigma]]$.
full textJacobson’s conjecture and skew PBW extensions
The aim of this paper is to compute the Jacobson’s radical of skew PBW extensions over domains. As a consequence of this result we obtain a direct relation between these extensions and the Jacobson’s conjecture, which implies that skew PBW extensions over domains satisfy this conjecture.
full textMy Resources
Journal title
volume 7 issue 1
pages 1- 24
publication date 2019-09-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023